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Abstract. The Gaussian Effective Potential in a fixed transverse unitarity gauge is studied for the static
three-dimensional U(1) scalar electrodynamics (Ginzburg-Landau phenomenological theory of supercon-
ductivity). In the broken-symmetry phase the mass of the electromagnetic field (inverse penetration depth)
and the mass of the scalar field (inverse correlation length) are both determined by solution of the coupled
variational equations. At variance with previous calculations, the choice of a fixed unitarity gauge prevents
from the occurrence of any unphysical degree of freedom. The theory provides a nice interpolation of the
experimental data when approaching the critical region, where the standard mean-field method is doomed
to failure.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
11.15.Ex Spontaneous breaking of gauge symmetries – 74.20.De Phenomenological theories (two-fluid,
Ginzburg-Landau, etc.) – 11.15.Tk Other nonperturbative techniques

1 Introduction

Since the discovery of high Tc superconductors several
unconventional models have been proposed in order to
describe the unusual properties of cuprates. In particu-
lar, the strong electron-electron coupling characterizing
such materials requires new theoretical methods beyond
the standard mean field approach. On the other hand
the general phenomenology is still well described by the
standard Anderson-Higgs mechanism: the supercurrent is
carried by pairs of charged fermions whose non-vanishing
expectation value breaks the gauge symmetry, thus en-
dowing the gauge bosons with a mass. Thus the standard
Ginzburg-Landau (GL) effective Lagrangian still provides
the best framework for a general description of the high-Tc

cuprates phenomenology. Moreover, as the GL action can
be seen as a power expansion of the exact action around
the critical point, the GL action must be recovered by any
microscopic theory at least around the transition. Thus,
regardless of the nature of the pairing mechanism, the GL
action is a sound starting point for a general description
of the high-Tc materials. Of course we cannot trust the
mean-field approach to the GL effective theory, and we ex-
pect that many unconventional properties are connected
with the breaking down of the simple mean field picture.
Quite recently, the GL model has been extensively stud-
ied both theoretically [1,2] and numerically [3] in order to
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clarify the universality class of the superconducting transi-
tion and the role of the critical fluctuations in the high-Tc

cuprates, as well as the order of the transition itself [4].
Actually the high-Tc cuprate superconductors are

characterized by a very small correlation length ξ which
allows the experimentalists to get closer to the critical
point where the thermal fluctuations cannot be neglected
and the mean field approximation is doomed to fail [5]. As
far as we know there is no full evidence that the universal
critical behaviour has been reached in any real sample [6],
but it is out of doubt that an intermediate range of tem-
perature is now accessible, where thermal fluctuations are
not negligible even if the sample is still out of the truly
critical regime. Thus, in order to describe some unconven-
tional properties of the high-Tc superconductors, we need
to incorporate the role of thermal fluctuations, but unfor-
tunately we cannot rely on the standard renormalization
group methods which would only describe the universal
limiting behaviour that could not be observed yet in any
real sample. We need some kind of interpolation scheme
for the non-universal regime where the behaviour depends
on the physical parameters of the sample, and we would
prefer a non-perturbative method in order to deal with
any strong coupling.

In this paper we study the Gaussian fluctuations by
means of a variational method, the Gaussian Effective
Potential (GEP), which has been discussed by several au-
thors as a tool for describing the breaking of symmetry in a
simple scalar theory [7,8]. As a toy model for electro-weak
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interactions, the scalar electrodynamics in four dimensions
has been studied by Ibañez-Meier et al. [9] who computed
the GEP by use of a general covariant gauge. However
their method gives rise to an unphysical, and undesirable,
degree of freedom.

We compute the GEP for the U(1) scalar electrody-
namics in three space dimensions where it represents the
standard static GL effective model of superconductivity.
In order to make evident the physical content of the the-
ory, thus avoiding the presence of unphysical degrees of
freedom, we work in unitarity gauge. This has been shown
to be formally equivalent to a full gauge-invariant method
once all the gauge degrees of freedom have been integrated
out [10]. The variational method provides a way to eval-
uate both the correlation length ξ and the penetration
depth � as a solution of coupled equations. The GL param-
eter κGL = �/ξ is found to be strongly temperature depen-
dent in contrast to the simple mean-field description [11].
On the other hand the model predictions are in perfect
agreement with some recent experimental data [12], which
can be nicely interpolated by our variational calculation.

The comparison with the experimental data is of spe-
cial importance as it provides a test for the GEP vari-
ational method itself. The predictions of the method in
3+1 dimensions, in the context of electro-weak interac-
tions, have been discussed by several authors [7,9,13,14],
but no real comparison with experimental data will be
achievable until the detection of the Higgs boson. Thus
high-Tc cuprate superconductors represent our next best
choice in order to test the reliability of the method.

The paper is organized as follows: in Section 2 the GL
action and partition function are introduced and discussed
within the unitarity gauge; in Section 3 the Gaussian vari-
ational method is applied to the three-dimensional GL
model, and the coupled variational equations are derived;
finally, in Section 4 the phenomenological predictions of
the method are compared with some experimental data
for the GL parameter.

2 The GL action in unitarity gauge

Let us consider the standard static GL action [15]

S =
∫

d3x

[
1
4
FµνFµν +

1
2
(Dµφ)∗(Dµφ)

+
1
2
m2

Bφ∗φ + λB(φ∗φ)2
]

. (1)

Here φ is a complex (charged) scalar field, whose covariant
derivative is defined as

Dµφ = ∂µ + ieBAµ (2)

and µ, ν = 1, 2, 3 run over the three space dimensions. The
magnetic field components Fµν = ∂µAν − ∂νAµ satisfy

1
2
FµνFµν = |∇ × A|2 (3)

and the partition function is defined by the functional in-
tegral

Z =
∫

D[φ, φ∗, Aµ]e−S . (4)

We may assume a transverse gauge ∇ · A = 0, and then
switch to unitarity gauge in order to make φ real. Let us
define two real fields ρ and γ according to φ = ρeiγ . The
unitarity gauge is recovered by the gauge transformation

A → A − 1
eB

∇γ(x) (5)

and the original transverse vector field A⊥ acquires a lon-
gitudinal component AL proportional to ∇γ. Thus the
original measure in equation (4) becomes∫

D[φ, φ∗,A⊥] =
∫

D[γ]ρD[ρ]D[A⊥]

→ const. ×
∫

ρD[ρ]D[AL]D[A⊥]. (6)

In unitarity gauge the action, equation (1), now reads

S =
∫

d3x

{
1
2
(∇ρ)2 +

1
2
m2

Bρ2 + λBρ4

+
1
2
e2

Bρ2(A2
L + A2

⊥) +
1
2
(∇× A⊥)2

}
(7)

and the longitudinal field AL may be integrated out ex-
actly yielding a constant factor and an extra 1/ρ factor
for the measure (6). Finally, dropping the constant fac-
tors, the partition function may be written as

Z =
∫

D[ρ,A⊥] exp
{
−

∫
d3x

[
1
2
(∇ρ)2 +

1
2
m2

Bρ2

+ λBρ4 +
1
2
e2

Bρ2A2
⊥ +

1
2
(∇× A⊥)2

]}
. (8)

We may enforce the transversal condition on the vector
field by a gauge fixing term in the action and, restoring
ρ = φ, the action reads

S =
∫

d3x

[
1
2
(∇φ)2 +

1
2
m2

Bφ2 + λBφ4 +
1
2
e2

Bφ2A2

+
1
2
(∇× A)2 +

1
2ε

(∇ ·A)2
]

. (9)

The partition function is now expressed as a functional
integral over the real scalar field φ and the generic three-
dimensional vector field A, with the extra prescription
that the parameter ε is set to zero at the end of the cal-
culation. Inserting a source term we may write

Z[j] =
∫

D[φ, Aµ] exp
{
−S +

∫
d3xjφ

}
(10)

with S given by equation (9). The free energy (effective
potential) follows by the Legendre transformation

F [ϕ] = − lnZ +
∫

d3xjϕ (11)

where ϕ is the average value of φ in presence of the
source j. The superconducting phase is characterized by
an absolute minimum of F for ϕ �= 0.
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3 The Gaussian method

From the partition function (10), the GEP may be eval-
uated by the δ expansion method discussed in refer-
ences [9,13]. In our case the GEP represents a variational
estimate of the free energy (11).

First we introduce a shifted field

φ̃ = φ − ϕ (12)

then we split the Lagrangian into two parts

L = L0 + Lint (13)

where L0 is the sum of two free-field terms describing a
vector field Aµ with mass ∆ and a real scalar field φ̃ with
mass Ω:

L0 =
[
+

1
2
(∇× A)2 +

1
2
∆2AµAµ +

1
2ε

(∇ ·A)2
]

+
[
1
2
(∇φ̃)2 +

1
2
Ω2φ̃2

]
. (14)

The interaction then reads

Lint = v0 + v1φ̃ + v2φ̃
2 + v3φ̃

3 + v4φ̃
4

+
1
2

(
e2

Bϕ2 − ∆2
)
AµAµ

+e2
BϕAµAµφ̃ +

1
2
e2

BAµAµφ̃2 (15)

where

v0 =
1
2
m2

Bϕ2 + λBϕ4 (16a)

v1 = m2
Bϕ + 4λBϕ3 (16b)

v2 =
1
2
m2

B + 6λBϕ2 − 1
2
Ω2 (16c)

v3 = 4λBϕ (16d)
v4 = λB. (16e)

We now expand the free energy to first order in Lint

following standard perturbation theory procedures. We
obtain

F [ϕ] =
1
2

Tr ln
[
g−1(x, y)

]
+

1
2

Tr ln
[
G−1

µν (x, y)
]

+
∫

d3x
{

v0 + v2g(x, x) + 3v4g
2(x, x)

+
1
2
e2

B

(
g(x, x) + ϕ2 − ∆2

)
Gµµ(x, x)

}
(17)

where g(x, y) is the free-particle propagator for the scalar
field, and Gµν(x, y) is the free-particle propagator for the
vector field

G−1
µν (x, y) =

∫
d3k

(2π)3
e−ik·(x−y)

[
δµν(k2 + ∆2)

+
(

1
ε
− 1

)
kµkν

]
. (18)

In the limit ε → 0, up to an additive constant

Tr ln
[
G−1

µν (x, y)
]

= 2V
∫

d3k

(2π)3
ln(k2 + ∆2) (19)

where V is the total volume. Dropping all constant terms,
the free energy density Veff = F/V (effective potential)
reads

Veff [ϕ] = I1(Ω) + 2I1(∆)

+

[
λBϕ4 +

1
2
m2

Bϕ2 +
1
2

{
m2

B − Ω2

+ 12λBϕ2 + 6λBI0(Ω)
}

I0(Ω)

]

+
(
e2

Bϕ2 + e2
BI0(Ω) − ∆2

)
I0(∆) (20)

where the divergent integrals In are defined according to

I0(M) =
∫

d3k

(2π)3
1

M2 + k2
(21)

I1(M) =
1
2

∫
d3k

(2π)3
ln(M2 + k2) (22)

and are regularized by insertion of a finite cut-off Λ.
The free energy (20) now depends on the mass pa-

rameters Ω and ∆. Since none of them was present in
the original GL action of equation (9), the free energy
should not depend on them, and the minimum sensitivity
method [16] can be adopted in order to fix the masses:
the free energy is required to be stationary for variations
of Ω and ∆. On the other hand the stationary point can
be shown to be a minimum for the free energy and the
method is equivalent to a pure variational method [9]. At
the stationary point the masses give the inverse correla-
tion lengths for the fields, the so called coherence length
ξ = 1/Ω and penetration depth � = 1/∆.

The stationary conditions

∂Veff

∂Ω2
= 0 (23a)

∂Veff

∂∆2
= 0 (23b)

give two coupled gap equations:

Ω2 = 12λBI0(Ω) + m2
B + 12λBϕ2 + 2e2

BI0(∆) (24a)

∆2 = e2
Bϕ2 + e2

BI0(Ω). (24b)

For any ϕ value, equations (24) must be solved numeri-
cally, and the minimum point values Ω and ∆ must be in-
serted back into equation (20) in order to get the Gaussian
free energy Veff(ϕ) as a function of the order parameter ϕ.
For a negative and small enough m2

B , we find that Veff

has a minimum at a non zero value of ϕ = ϕmin > 0,
thus indicating that the system is in the broken-symmetry
superconducting phase. Of course the masses Ω, ∆ only
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take their physical value at the minimum of the free en-
ergy ϕmin. This point may be found by requiring that

∂Veff

∂ϕ2
= 0 (25)

where as usual the partial derivative is allowed as far as
the gap equations (24) are satisfied [7]. The condition (25)
combined with the gap equation (24a) yields the very sim-
ple result

ϕ2
min =

Ω2

8λB
· (26)

However we notice that here the mass Ω must be found by
solution of the coupled gap equations. Thus equation (26)
and (24) must be regarded as a set of coupled equations
and must be solved together in order to find the physical
values for the correlation lengths and the order parameter.

Insertion of equation (26) into equation (24b) yields a
simple relation for the GL parameter κGL

κ2
GL =

(
�

ξ

)2

= κ2
0

1

1 +
I0(Ω)
ϕ2

min

(27)

where κ0 = e2
B/(8λB) is the mean-field GL parameter

which does not depend on temperature. Equation (27)
shows that the GL parameter is predicted to be temper-
ature dependent through the non trivial dependence of
Ω and ϕmin. At low temperature, where the order pa-
rameter ϕmin is large, the deviation from the mean-field
value κ0 is negligible. Conversely, close to the critical
point, where the order parameter is vanishing, the cor-
rection factor in equation (27) becomes very important.

4 Comparison with experimental data

In order to make contact with the phenomenology of the
high-Tc cuprate superconductors we need to fix the bare
parameters of the GL action. The standard derivation [15]
of the GL action (1) from a microscopic model gives a di-
rect connection between microscopic first-principle quanti-
ties and phenomenological bare parameters. The bare cou-
pling eB turns out to be related to the elementary charge
of fermions, to the critical temperature Tc and to the zero
temperature coherence length ξ0 through [15]

eB =
2e

�c

√
kBTcξ0. (28)

The other parameters may be fixed by knowledge of some
zero temperature phenomenological quantities like coher-
ence length and penetration depth. The bare mass param-
eter m2

B may be regarded as a linear function of temper-
ature

m2
B = m2

c +
(

1 − T

Tc

)
(m2

0 − m2
c) (29)

where m2
0 is the value which is required in order to find

Ω = 1/ξ0 from the gap equation (24a) at ϕ = ϕmin, and
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Fig. 1. The GL parameter according to equation (27) for
κ0 = 100, ξ0 = 1.36 nm, Tc = 121.5 K and Λξ0 = 57 (full
line). The circles are the experimental data of reference [12]
for Tl2Ca2Ba2Cu3O10.

m2
c is the value of m2

B at the transition point. In mean-field
approximation m2

c = 0, while here the fluctuations shift
the transition point to a non vanishing m2

B value. The bare
coupling λB is regarded as a constant, and is fixed through
equation (24b) by requiring that at zero temperature (i.e.,
for m2

B = m2
0) the penetration depth �0 = 1/∆. This

way the method provides a one-parameter interpolation
scheme for the superconducting properties, as the cut-off
Λ still has to be fixed. The cut-off Λ is a characteristic
energy scale of the sample, and may be determined by a
direct fit of the experimental data.

Unfortunately there are not too many available exper-
imental data on the behaviour of superconductors close to
the critical point. Even for the high-Tc cuprate supercon-
ductors the measurement of both coherence length and
penetration depth up to the pre-critical region is not an
easy task. The GL parameter has been reported by Brand-
statter et al. [12] as a function of temperature for the high
Tc material Tl2Ca2Ba2Cu3O10 (Tc = 121.5 K, κ0 = 100,
ξ0 = 1.36 nm). These data are shown in Figure 1 together
with the interpolation curve obtained by equation (27) for
Λξ0 = 57. We observe that the experimental GL param-
eter is almost constant κGL ≈ κ0 up to T = 0.8Tc where
it starts decreasing. Thus for T/Tc > 0.8 the mean-field
approximation breaks down and the thermal fluctuations
become important. On the other hand equation (27) fits
the experimental data up to 98% of the critical temper-
ature. Beyond that point there are neither experimental
data nor reliable theoretical predictions. As we approach
the critical point some universal behaviour should be ex-
pected and the role of thermal fluctuations becomes too
important to be dealt with by the present method [17].

In perturbative calculations, at one-loop order, the
unitarity gauge is known [18] to give rise to wrong predic-
tions around the critical point. Thus it could be argued
that, because of the bad ultraviolet behaviour of the gauge
propagator, higher order diagrams should be included to
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cancel the divergences even in the present one loop cal-
culation. However, at variance with perturbative approxi-
mations, variational calculations are known to be less sen-
sitive to higher order corrections. The GEP provides very
sensible results even when the one loop effective potential
fails entirely [7]. Moreover, while the way of dealing with
divergences is crucial at the critical point, the present cal-
culation deals with a pre-critical region where the cut-off
regulator is finite and plays the role of a physical length
scale which is naturally determined by the structure of the
condensed matter system. Thus divergences are not an is-
sue: our unitarity gauge Lagrangian must be regarded as
regularized and is known [18] to give the same results pre-
dicted by other gauge choices.

It must be kept in mind that all variational methods
are quite sensitive to the choice of the trial functional. The
Gaussian functional is not by itself gauge invariant, and a
gauge dependent result is expected anyway by this varia-
tional method. The question of determining the best gauge
choice has been addressed by Ibañez-Meier et al. [9] who
found the Landau gauge (∂ ·A) = 0 to be optimal in four
dimensions by variational arguments. In three dimensions
that is equivalent to the transverse gauge we started with
in Section 2. Unfortunately the Gaussian functional also
breaks the U(1) symmetry of the Lagrangian, and unphys-
ical massive degrees of freedom show up unless the uni-
tarity gauge is chosen. Thus our gauge prescription must
be regarded as a compromise which allows to make con-
tact with the real phenomenology. The comparison with
experimental data is encouraging in this respect.

As the GEP provides a nice way to interpolate the ex-
perimental data beyond the mean-field regime, we expect
the method to be reliable for the description of symmetry
breaking in 3 + 1 dimensions where the scalar electrody-
namics may be regarded as a toy model for the standard
electro-weak theory. Since there is no reason to believe
that the real universe is very close to the transition point,

the Gaussian method may be regarded as a valid tool for
describing the effects of fluctuations beyond mean-field
approximation.
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